
Code is Cheap, Show Me the Proof
A Rush Introduction to Coq

Paul Zhu

July 4, 2020

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 1 / 26



Today

1 Introduction

2 Tutorials
Logic & Curry-Howard Correspondence
Functional Programming & Functional Correctness
Formalizing Your Theory

3 Summary

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 2 / 26



Contents

1 Introduction

2 Tutorials
Logic & Curry-Howard Correspondence
Functional Programming & Functional Correctness
Formalizing Your Theory

3 Summary

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 3 / 26



Installation

Home page: https://coq.inria.fr

Github repo: https://github.com/coq/coq

CoqIDE: https://github.com/coq/coq/releases
From OPAM: https://coq.inria.fr/opam-using.html
From source: https://github.com/coq/coq/blob/master/INSTALL

Document: https://coq.inria.fr/refman/index.html

Coq is a formal proof management system. It provides a formal language to
write mathematical definitions, executable algorithms and theorems
together with an environment for semi-interactive development of
machine-checked proofs.

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 4 / 26

https://coq.inria.fr
https://github.com/coq/coq
https://github.com/coq/coq/releases
https://coq.inria.fr/opam-using.html
https://github.com/coq/coq/blob/master/INSTALL
https://coq.inria.fr/refman/index.html


Applications

Un des points les plus remarquables de Coq est la possibilité de synthétiser des pro-
grammes certifiés à partir de preuves, et, depuis peu, des modules certifiés.

– Le Coq’Art (V8)

Verified C compiler: CompCert
Verified operating system: CertiKOS
Four color theorem
Gödel’s incompleteness theorem
Homotopy type theory
Iris: a higher-order concurrent separation logic framework
Coq in Coq

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 5 / 26

http://compcert.inria.fr
http://flint.cs.yale.edu/certikos/index.html
http://r6.ca/Goedel/goedel1.html
https://github.com/HoTT/HoTT/
https://iris-project.org
https://github.com/coq-contribs/coq-in-coq


Coq Workshops

Coq Workshops (generally colocated with ITP)
CoqPL (colocated with POPL)
DeepSpec (colocated with PLDI since 2017)

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 6 / 26

https://coq-workshop.gitlab.io
https://coq.inria.fr/coqpl.html
https://deepspec.org/page/Event/


Why Proof?

If debugging is the process of removing bugs, then programming must be the process

of putting them in.

– Edsger W. Dijkstra

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 7 / 26



Why Formal Proof?

西江月·数学证明题

即得易见平凡，仿照上例显然。留作习题答案略，读者自证不难。

反之亦然同理，推论自然成立。略去过程 QED，由上可知证毕。

– 佚名

And last, but not least, thanks to the Coq team, because without Coq there would be

no proof.

– Russell O’Connor

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 8 / 26



Gallina

A concise primitive language for expressing logical theories, using keywords:
Definition

Inductive / CoInductive

Fixpoint / CoFixpoint

Axiom

Theorem / Lemma / Fact / Example

etc.

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 9 / 26



Tactic Language

An extensive (and extensible) language of tactics to write proof scripts, useful commands:
intros, rewrite, simpl, reflexivity
induction, destruct
inversion

split, left, right, exists
apply, exact
auto

etc.
and a “meta language” to write macros for tactics, supporting pattern matching, composing,
repeating, etc.

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 10 / 26



Vernacular

An extensive language of commands to manage the proof development environment:
notations,
implicit arguments, and
type classes.

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 11 / 26



Learning Coq

Books:
Software Foundations
Mathematical Components
Le Coq’Art (V8)

Courses:
CIS 500 instructed by Benjamin Pierce at University of Pennsylvania
See this page for more

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 12 / 26

https://softwarefoundations.cis.upenn.edu
https://math-comp.github.io/mcb/book.pdf
https://www.labri.fr/perso/casteran/CoqArt/coqartF.pdf
https://www.seas.upenn.edu/~cis500/current/index.html
https://github.com/coq/coq/wiki/CoqInTheClassroom


Contents

1 Introduction

2 Tutorials
Logic & Curry-Howard Correspondence
Functional Programming & Functional Correctness
Formalizing Your Theory

3 Summary

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 13 / 26



Contents

1 Introduction

2 Tutorials
Logic & Curry-Howard Correspondence
Functional Programming & Functional Correctness
Formalizing Your Theory

3 Summary

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 14 / 26



Types as Propositions

a : A ⇐⇒ a is a proof of A

Types Propositions
0 ⊥
1 ⊤

A × B A ∧ B
A + B A ∨ B
A → B A → B

Πx :A B(x) ∀x ∈ A,B(x)
Σx :A B(x) ∃x ∈ A,B(x)
IdA(a, b) a = b

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 15 / 26



Contents

1 Introduction

2 Tutorials
Logic & Curry-Howard Correspondence
Functional Programming & Functional Correctness
Formalizing Your Theory

3 Summary

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 16 / 26



List

cons

1 cons

2 cons

3 nil
[1, 2, 3]

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 17 / 26



Contents

1 Introduction

2 Tutorials
Logic & Curry-Howard Correspondence
Functional Programming & Functional Correctness
Formalizing Your Theory

3 Summary

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 18 / 26



ToyLang: Syntax

Term t ::= zero
| succ t1
| plus t1 t2
| nil
| cons t1 t2
| len t1
| idx t1 t2
| sgt t1

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 19 / 26



ToyLang: Value

num-zero num zero num-succ num n
num (succ n)

lst-nil lst nil lst-cons num n lst l
lst (cons n l)

value t := num t ∨ lst t

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 20 / 26



ToyLang: Small-Step

t → t ′

ST-succ t → t ′
succ t → succ t ′

ST-plus-zero num n
plus zero n → n ST-plus-succ

num n1 num n2
plus (succ n1) n2 → succ (plus n1 n2)

ST-plus-1
t1 → t ′1

plus t1 t2 → plus t ′1 t2
ST-plus-2

num t1 t2 → t ′2
plus t1 t2 → plus t1 t ′2

· · ·

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 21 / 26



ToyLang: Typing

Type T ::= Nat | List

⊢ t : T

T-zero ⊢ zero : Nat T-succ ⊢ t : Nat
⊢ succ t : Nat T-plus

⊢ t1 : Nat ⊢ t2 : Nat
⊢ plus t1 t2 : Nat

T-nil ⊢ nil : List T-cons
⊢ t1 : Nat ⊢ t2 : List

⊢ cons t1 t2 : List

· · ·

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 22 / 26



Contents

1 Introduction

2 Tutorials
Logic & Curry-Howard Correspondence
Functional Programming & Functional Correctness
Formalizing Your Theory

3 Summary

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 23 / 26



Coq CANNOT...

prove everything automatically
accept any function (Fixpoint) that actually terminates
support classical logic directly (however, you may add axioms)

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 24 / 26



Beyond Coq

Isabelle/HOL (set theory, classical logic)
PVS (classical logic, refinement types)
Agda (CuTT)
Idris (type-driven development)
Lean (CIC-like)
Arend (HoTT)

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 25 / 26

https://isabelle.in.tum.de
http://pvs.csl.sri.com
https://github.com/agda/agda
https://www.idris-lang.org
https://leanprover.github.io
https://arend-lang.github.io


Beyond Proof Assistant

Solver-aided programming languages: Dafny, Rosette
Software model checking framework: BLAST, CPAChecker, Ultimate Automizer, CBMC
Modeling languages: NuSMV, Spin, TLA+, SCADE, PRISM

Paul Zhu Code is Cheap, Show Me the Proof July 4, 2020 26 / 26

https://www.rise4fun.com/Dafny
https://emina.github.io/rosette/
http://goto.ucsd.edu/~rjhala/blast.html
https://cpachecker.sosy-lab.org
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&tool=automizer
https://www.cprover.org/cbmc/
http://nusmv.fbk.eu
http://spinroot.com/spin/whatispin.html
https://lamport.azurewebsites.net/tla/tla.html
https://www.ansys.com/products/embedded-software/ansys-scade-test
https://www.prismmodelchecker.org

	Introduction
	Tutorials
	Logic & Curry-Howard Correspondence
	Functional Programming & Functional Correctness
	Formalizing Your Theory

	Summary

