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Installation

Home page: https://coq.inria.fr

Github repo: https://github.com/coq/coq

CoqIDE: https://github.com/coq/coq/releases
From OPAM: https://coq.inria.fr/opam-using.html
From source: https://github.com/coq/coq/blob/master/INSTALL

Document: https://coq.inria.fr/refman/index.html

Coq is a formal proof management system. It provides a formal language to
write mathematical definitions, executable algorithms and theorems
together with an environment for semi-interactive development of
machine-checked proofs.
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Applications

Un des points les plus remarquables de Coq est la possibilité de synthétiser des pro-
grammes certifiés à partir de preuves, et, depuis peu, des modules certifiés.

– Le Coq’Art (V8)

Verified C compiler: CompCert
Verified operating system: CertiKOS
Four color theorem
Gödel’s incompleteness theorem
Homotopy type theory
Iris: a higher-order concurrent separation logic framework
Coq in Coq
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http://compcert.inria.fr
http://flint.cs.yale.edu/certikos/index.html
http://r6.ca/Goedel/goedel1.html
https://github.com/HoTT/HoTT/
https://iris-project.org
https://github.com/coq-contribs/coq-in-coq


Coq Workshops

Coq Workshops (generally colocated with ITP)
CoqPL (colocated with POPL)
DeepSpec (colocated with PLDI since 2017)
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https://coq-workshop.gitlab.io
https://coq.inria.fr/coqpl.html
https://deepspec.org/page/Event/


Why Proof?

If debugging is the process of removing bugs, then programming must be the process

of putting them in.

– Edsger W. Dijkstra
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Why Formal Proof?

西江月·数学证明题

即得易见平凡，仿照上例显然。留作习题答案略，读者自证不难。

反之亦然同理，推论自然成立。略去过程 QED，由上可知证毕。

– 佚名

And last, but not least, thanks to the Coq team, because without Coq there would be

no proof.

– Russell O’Connor
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Gallina

A concise primitive language for expressing logical theories, using keywords:
Definition

Inductive / CoInductive

Fixpoint / CoFixpoint

Axiom

Theorem / Lemma / Fact / Example

etc.
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Tactic Language

An extensive (and extensible) language of tactics to write proof scripts, useful commands:
intros, rewrite, simpl, reflexivity
induction, destruct
inversion

split, left, right, exists
apply, exact
auto

etc.
and a “meta language” to write macros for tactics, supporting pattern matching, composing,
repeating, etc.
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Vernacular

An extensive language of commands to manage the proof development environment:
notations,
implicit arguments, and
type classes.
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Learning Coq

Books:
Software Foundations
Mathematical Components
Le Coq’Art (V8)

Courses:
CIS 500 instructed by Benjamin Pierce at University of Pennsylvania
See this page for more
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https://softwarefoundations.cis.upenn.edu
https://math-comp.github.io/mcb/book.pdf
https://www.labri.fr/perso/casteran/CoqArt/coqartF.pdf
https://www.seas.upenn.edu/~cis500/current/index.html
https://github.com/coq/coq/wiki/CoqInTheClassroom
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Types as Propositions

a : A ⇐⇒ a is a proof of A

Types Propositions
0 ⊥
1 ⊤

A × B A ∧ B
A + B A ∨ B
A → B A → B

Πx :A B(x) ∀x ∈ A,B(x)
Σx :A B(x) ∃x ∈ A,B(x)
IdA(a, b) a = b
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List

cons

1 cons

2 cons

3 nil
[1, 2, 3]
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ToyLang: Syntax

Term t ::= zero
| succ t1
| plus t1 t2
| nil
| cons t1 t2
| len t1
| idx t1 t2
| sgt t1
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ToyLang: Value

num-zero num zero num-succ num n
num (succ n)

lst-nil lst nil lst-cons num n lst l
lst (cons n l)

value t := num t ∨ lst t
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ToyLang: Small-Step

t → t ′

ST-succ t → t ′
succ t → succ t ′

ST-plus-zero num n
plus zero n → n ST-plus-succ

num n1 num n2
plus (succ n1) n2 → succ (plus n1 n2)

ST-plus-1
t1 → t ′1

plus t1 t2 → plus t ′1 t2
ST-plus-2

num t1 t2 → t ′2
plus t1 t2 → plus t1 t ′2

· · ·
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ToyLang: Typing

Type T ::= Nat | List

⊢ t : T

T-zero ⊢ zero : Nat T-succ ⊢ t : Nat
⊢ succ t : Nat T-plus

⊢ t1 : Nat ⊢ t2 : Nat
⊢ plus t1 t2 : Nat

T-nil ⊢ nil : List T-cons
⊢ t1 : Nat ⊢ t2 : List

⊢ cons t1 t2 : List

· · ·
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Coq CANNOT...

prove everything automatically
accept any function (Fixpoint) that actually terminates
support classical logic directly (however, you may add axioms)
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Beyond Coq

Isabelle/HOL (set theory, classical logic)
PVS (classical logic, refinement types)
Agda (CuTT)
Idris (type-driven development)
Lean (CIC-like)
Arend (HoTT)
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https://isabelle.in.tum.de
http://pvs.csl.sri.com
https://github.com/agda/agda
https://www.idris-lang.org
https://leanprover.github.io
https://arend-lang.github.io


Beyond Proof Assistant

Solver-aided programming languages: Dafny, Rosette
Software model checking framework: BLAST, CPAChecker, Ultimate Automizer, CBMC
Modeling languages: NuSMV, Spin, TLA+, SCADE, PRISM
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https://www.rise4fun.com/Dafny
https://emina.github.io/rosette/
http://goto.ucsd.edu/~rjhala/blast.html
https://cpachecker.sosy-lab.org
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&tool=automizer
https://www.cprover.org/cbmc/
http://nusmv.fbk.eu
http://spinroot.com/spin/whatispin.html
https://lamport.azurewebsites.net/tla/tla.html
https://www.ansys.com/products/embedded-software/ansys-scade-test
https://www.prismmodelchecker.org
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