Parsing from Scratch
(Tunight Talk)

Paul Zhu

May 25, 2019

Paul Zhu Parsing from Scratch

Parsing is Everywhere

Compilers
Regular expressions

°
°

@ Text processing
@ Deserialization
°

etc.

Paul Zhu Parsing from Scratch

Theory & Practice Combined

In my last Tunight talk:

Programming Languages (PL) is one of the most theoretical
topic in computer science, and it is also one of the most practical
field targeting at software and system engineering.

In parsing, theory and practice are combined — things get worked and
many of us know why.

Paul Zhu Parsing from Scratch May 25, 2019 3/36

Parsing Techniques in Mainstream

“l give you a grammar, you give me a parser.” — Parser generator

“Why not express parsers in terms of a couple of our favorite
combinators, and better be monadic?” — Parser combinators

Paul Zhu Parsing from Scratch May 25, 2019 4/36

Today

@ Parser Generator
© Parser Combinators

© Parsing, the Future
@ Typed Parsing
@ Automated Parsing

Paul Zhu Parsing from Scratch

Contents

@ Parser Generator

Paul Zhu Parsing from Scratch

Off-the-shelf Tools

@ lex, jflex, ocamllex, alex
@ yacc, byacc, ocamlyacc, happy
@ Antlr

What does YACC mean?
@ Yet another Cartesian Cubical? !
@ Yet another compiler compiler!

'https://github.com/mortberg/yacctt/

Paul Zhu Parsing from Scratch May 25, 2019 7/36

https://github.com/mortberg/yacctt/

When Building your own Language ...

What's the dragon book? The dragon book is all about parsing...
It turns out almost everything about this is about syntax.

What does Antrl do? Antrl is a parser. It's an awesome compiler
compiler, what can be better than that? That's a fancy name
for parser!

Building a language is basically about defining the grammar and

adding production rules to this grammar... This is exactly the
kind of nonsense that leads to badly defined languages...

Paul Zhu Parsing from Scratch May 25, 2019 8/36

When Building your own Language ...

So at least for the duration of this course I'm not gonna allow you
to do this kind of nonsense. I'm offering you a recipe thinking
about language design. Think about what features you have,
what features you want, what features you will end up being
forced to have by your user bases if you are ever successful.

Write a little interpreter, play with the core of the language, and
understand the consequences ... Now you go to Stackoverflow
and say I've already got my language, and how do | build the
language part of my language.

— Shriram Krishnamurthi (“Though my head is often in security,
networking, formal methods, and HCI, my heart is in program-
ming languages”). In video https://www.youtube.com/watch?
v=3N__tvmZrzc, 38:50 — 41:40.

Paul Zhu Parsing from Scratch May 25, 2019 9/36

https://www.youtube.com/watch?v=3N__tvmZrzc
https://www.youtube.com/watch?v=3N__tvmZrzc

Foundation of Parser Generators

Formal language and automata theory, which every CS undergraduate
student learns!

In detail:
e LL(1)
o LL(k)
e LR(1), SLR(1), LALR(1), etc.

Paul Zhu Parsing from Scratch May 25, 2019 10/36

Demonstration

@ LL(1) Parser Generator:
https://github.com/paulzfm/LL1-Parser-Gen

Paul Zhu Parsing from Scratch

https://github.com/paulzfm/LL1-Parser-Gen

Contents

© Parser Combinators

Paul Zhu Parsing from Scratch

Why Parser Combinators?

@ | don’t want to learn any new tools.
@ My grammar is changing all the time, a la agile.

@ | hope to dynamically construct parsers in runtime.

Yacc is dead?
http://matt.might.net/articles/parsing-with-derivatives/

Paul Zhu Parsing from Scratch May 25, 2019 13/36

http://matt.might.net/articles/parsing-with-derivatives/

What is Indeed a Parser?

| give you a source (e.g. a char stream), you give me back a parsing
result (e.g. a parsing tree), which may fail, together with the remaining
source that is not consumed.

Paul Zhu Parsing from Scratch May 25, 2019 14 /36

Parsec

@ 1 parsec ~ 3.26 light-years 2

@ A parser combinator library!

*https://en.wikipedia.org/wiki/Parsec

Paul Zhu Parsing from Scratch

https://en.wikipedia.org/wiki/Parsec

Demonstration

@ scala-combinator-library

@ Haskell Parsec

Paul Zhu Parsing from Scratch

Combinators Summary

eof :: Parser ()

char :: Char -> Parser Char

1> :: Parser a -> Parser a -> Parser a

choice :: [Parser al] -> Parser a

try :: Parser a -> Parser a

many :: Parser a -> Parser [al

many1 :: Parser a -> Parser [al

sepBy :: Parser a -> Parser sep -> Parser [a]

between :: Parser open -> Parser close -> Parser a -> Parser a

optionMaybe :: Parser a -> Parser (Maybe a)

Paul Zhu Parsing from Scratch

May 25, 2019

17/36

Monadic Operations

return :: Monad m => a -> m a
(>>=) :: Monadm=>ma->(@->mb) >mb
>) :: Monadm=>ma->mb->mb

A parser is a monad!

Paul Zhu Parsing from Scratch

Contents

© Parsing, the Future
@ Typed Parsing
@ Automated Parsing

Paul Zhu Parsing from Scratch

Contents

@ Parser Generator

© Parser Combinators

© Parsing, the Future
@ Typed Parsing

Paul Zhu Parsing from Scratch

Motivation: “Bizarre” Behaviors of Parsec

pl = (char 'a' >> return 1) <|> (char 'a' >> return 2)
parse p-l nn Hall

p2 = (optionMaybe (char 'a')) >>= \x ->
(optionMaybe (char 'a')) >>= \y ->
return (x, y)

parse p2 nn nan
p3 = (eof >> return [])
<|> (p3 >>= \xs -> char 'a' >>= \x —-> return $ xs ++ [x])
parse p3 nn nn
parse p3 nn HaaH
p4 = (char 'a' > char 'b' >> return 1)
<|> (char 'a' >> char 'c' >> return 2)
parse p4 nn ”abH
parse p4 nn llaCH

Paul Zhu Parsing from Scratch May 25, 2019 21/36

Combinators as a Formal Language

Grammar/Expression g := L |e|c|x|gVvdg |g-d |uxg
where
@ c € 2, a finite set of characters
@ v € V, a countably infinite set of variables

@ Kleene star is definable by means of a fixed point:

g =ux.(eVyg-x)

This part is based upon: Neelakantan R. Krishnaswami, Jeremy Yallop. A
Typed, Algebraic Approach to Parsing. PLDI'19.

Paul Zhu Parsing from Scratch May 25, 2019 22/36

Ambiguity in Predictive Parsing

@ (Disjunctive non-determinism) When parsing a string w against a
grammar of the form g; V g», then we have to decide whether w
belongs to g1 or g».

@ (Sequential non-determinism) When parsing a string w against a
grammar of the form g; - g», we have to split it into two pieces wy
and wy so that w = wy - wo where wy belongs to g1 and ws belongs
to go.

Q: How can we solve these problems?

Paul Zhu Parsing from Scratch May 25, 2019 23/36

Eliminating Ambiguities

null(L) = ¢ € L
first(L) = {c|3IweX*.c-we L}
flast(L) {c|Iwel\{e}, W e w-c-welL}

Eliminating disjunctive non-determinism: their first character need be
disjoint.

Lemma 1
If first(L) N first(M) = @ and =(null(L) A null(M)), then LN M = @. J

Eliminating sequential non-determinism: the split need be unique.

Lemma 2

If flast(L) N first(M) = @ and —~null(L) and w € L- M, then there are
unique wy € L and wy; € M such that w; - wy = w.

Paul Zhu Parsing from Scratch May 25, 2019 24 /36

Do it the PL Way!

@ A grammar/expression can be regarded as programs.

@ We only expect a part of the programs which have “good”
properties.

@ Thus, we specify a type system that is sound, i.e., every well-typed
program do have the “good” properties.

Nowadays, PL is almost about types!

Paul Zhu Parsing from Scratch May 25, 2019 25/36

Types: Motivation

Type 7 :: {null :: Bool, first :: P(X), flast :: P(X)}

We expect the types to overapproximate the properties of the language,
and we define the satisfaction judgment L = T as

LT < null(L) = T.null A first(L) C T.first A flast(L) C T.flast

Paul Zhu Parsing from Scratch May 25, 2019 26 /36

Types Definition

7, = {null = false, first = &, flast = &}
Te = {null = true, first = &, flast = &}
T = {null = false, first = {c}, flast = &}
71V T2 = {null = 71.null V 1o.null, first = 71 first U 7 first,
flast = 77 .flast U 7, .flast}
T1 ® To = (71 first N 1o first = @) A =(T.null vV 72.null)
T T=T, =T TL
71 - T2 = {null = 7y.null V 75.null,
first = 71 .first U if 7q.null then 7. first else &,
flast = 75.flast U if 7o.null then 75 first U 71 .flast else @}
T1 ® To = (71.flast N 7o first = @) A ~71.null

7" = {null = true, first = 7 first, flast = 7.flast U 7 .first}

Paul Zhu Parsing from Scratch May 25, 2019 27 /36

Typing Judgment

Context '/ A:=e |, x:T

The main typing judgement has the form
MAFg:T

is read as “under ordinary hypotheses I' and guarded hypotheses A, the
grammar g has the type 7", where the guarded variables are those which
cannot occur at the head of a string.

Example 1

If x : 7 is guarded, the grammar x is considered ill-typed, but c - x is
permitted.

Paul Zhu Parsing from Scratch May 25, 2019 28/36

Typing Rules

T-B TE

TAF L7, “TTAre: T

x:T€EeTl

H i vy e TV A X7

. F;Al—gl:'rl F;A|—92:T2 Tl@’rg
T-Union

MMAFgIVgG 1V
MHMAFg 7Ty (MA),eFg T2 T1®T

T-Concat

AFgL-Go:T1 T2
HMAXx:THg:T

T-Fi
T AF (ux:T.9):T

Remark: In T-Fix, the guarded x ensures that no left-recursive definitions
are typeable.

Paul Zhu Parsing from Scratch May 25, 2019 29 /36

Contents

@ Parser Generator

© Parser Combinators

© Parsing, the Future

@ Automated Parsing

Paul Zhu Parsing from Scratch

Log Parser

/* A logging code snippet extracted from:
hadoop/hdfs/server/datanode/BlockReceiver.java */

LOG.info("Received block " + block + " of size "
+ block.getNumBytes() + " from " + inAddr);
Log Message

2015-10-18 18:05:29,570 INFO dfs.DataNode$PacketResponder: Received
block blk_-562725280853087685 of size 67108864 from /10.251.91.84

Y Structured Log
TIMESTAMP 2015-10-18 18:05:29,570
LEVEL INFO
COMPONENT dfs.DataNode$PacketResponder
TEEIV\II:LI\II\TTE Received block <*> of size <*> from /<*>
PARAMETERS ["blk_-562725280853087685", “67108864", "10.251.91.84"]

Jieming Zhu, Shilin He, Jinyang Liu, et al. Tools and Benchmarks for
Automated Log Parsing. ICSE’19. https://github.com/logpai/logparser

https://github.com/logpai/logparser

FlashExtract

Show: 20 - 1-20 Next>

Title / Author Cited by Year
Finding bugs with a constraint solver
[197 2000
ACM SIGSOFT Software Engineering Notes 25 (5), 14-25
Associating synchronization constraints with data in an object-oriented language
[I 176 2006
ACM SIGPLAN Notices 41 (1), 334-345
Some Shortcomings of OCL, the Object Constraint Language of UML.
M Vaziri 81 2000
TOOLS (34), 555-562
Model checking software systems: A case study
68 1995

ACM SIéSOFT Software Engineering Notes 20 (4), 128-139

Vu Le, Sumit Gulwani. FlashExtract: A Framework for Data Extraction
by Examples. PLDI'14.

Paul Zhu Parsing from Scratch May 25, 2019 32/36

AlphaRegex

Description
Strings have at most one pair of consecutive 1s
Examples
Positive Negative
0 111
11 110011
101010 0110110
00011000 00011001100
00100110001 011100011110
Answers
Students A variety of uncertain
answers
ALPHAREGEX (170)*1717(017)*

Mina Lee, Sunbeom So, Hakjoo Oh. Synthesizing Regular Expressions
from Examples for Introductory Automata Assignments. GPCE'16.

May 25, 2019

33/36

Parsify

pa rsify W Label

ident 1 a2 ;
fumeral 23 *4-5;
string (a) S12 4 x 419 ;
4
r
5 fun square X = X * X ;
(b) 6 funareawh=w *h ;

(C)

8z-y*areaxy+z;

9

Select Resolution:

r
4Prev = Next Resolve Ambiguity

ex]
ex] +

12

expr +

® " N

— e x

expr = expr '+' expr {left}

®

Figure 1. The Parsify user interface: (a) File View, (b) Legend,

(c) Label Box, (d) Label Button, (¢) Parse Tree Pane, (f) Resolution
Pane, and (g) Negative Label

Alan Leung, John Sarracino, Sorin Lerner. Interactive Parser Synthesis by

Example. PLDI'15.

Paul Zhu Parsing from Scratch

May 25, 2019

34/36

Glade

® Target language L£(Cxmi), where the context-free grammar
Cxm. has terminals Xxmi. = {a,...,z,<,>,/}, start symbol
Axmr, and production

Axmr = (2 + ... + z + <a>Axm)"
® QOracle OXML(O:) =]I[Oz € E(CXML)]

® Seed inputs Exmi = {axmw}, where axm. = <a>hi

Osbert Bastani, Rahul Sharma, Alex Aiken, Percy Liang. Synthesizing
Program Input Grammars. PLDI'17.
https://github.com/obastani/glade

Paul Zhu Parsing from Scratch May 25, 2019 35/36

https://github.com/obastani/glade

Parsing is an Active Field

Although the topic, the theory, and the techniques of parsing are almost
well-studied in academia and widely-used in industry, research has never
been stopped and novel progress are made year by year.

Paul Zhu Parsing from Scratch May 25, 2019 36 /36

	Parser Generator
	Parser Combinators
	Parsing, the Future
	Typed Parsing
	Automated Parsing

