
Parsing from Scratch
(Tunight Talk)

Paul Zhu

May 25, 2019

Paul Zhu Parsing from Scratch May 25, 2019 1 / 36

Parsing is Everywhere

Compilers

Regular expressions

Text processing

Deserialization

etc.

Paul Zhu Parsing from Scratch May 25, 2019 2 / 36

Theory & Practice Combined

In my last Tunight talk:

Programming Languages (PL) is one of the most theoretical

topic in computer science, and it is also one of the most practical

field targeting at software and system engineering.

In parsing, theory and practice are combined – things get worked and

many of us know why.

Paul Zhu Parsing from Scratch May 25, 2019 3 / 36

Parsing Techniques in Mainstream

“I give you a grammar, you give me a parser.” – Parser generator

“Why not express parsers in terms of a couple of our favorite

combinators, and better be monadic?” – Parser combinators

Paul Zhu Parsing from Scratch May 25, 2019 4 / 36

Today

1 Parser Generator

2 Parser Combinators

3 Parsing, the Future

Typed Parsing

Automated Parsing

Paul Zhu Parsing from Scratch May 25, 2019 5 / 36

Contents

1 Parser Generator

2 Parser Combinators

3 Parsing, the Future

Typed Parsing

Automated Parsing

Paul Zhu Parsing from Scratch May 25, 2019 6 / 36

Off-the-shelf Tools

lex, jflex, ocamllex, alex

yacc, byacc, ocamlyacc, happy

Antlr

What does YACC mean?

Yet another Cartesian Cubical? 1

Yet another compiler compiler!

1https://github.com/mortberg/yacctt/
Paul Zhu Parsing from Scratch May 25, 2019 7 / 36

https://github.com/mortberg/yacctt/

When Building your own Language ...

What’s the dragon book? The dragon book is all about parsing...

It turns out almost everything about this is about syntax.

What does Antrl do? Antrl is a parser. It’s an awesome compiler

compiler, what can be better than that? That’s a fancy name

for parser!

Building a language is basically about defining the grammar and

adding production rules to this grammar... This is exactly the

kind of nonsense that leads to badly defined languages...

Paul Zhu Parsing from Scratch May 25, 2019 8 / 36

When Building your own Language ...

So at least for the duration of this course I’m not gonna allow you

to do this kind of nonsense. I’m offering you a recipe thinking

about language design. Think about what features you have,

what features you want, what features you will end up being

forced to have by your user bases if you are ever successful.

Write a little interpreter, play with the core of the language, and

understand the consequences ... Now you go to Stackoverflow

and say I’ve already got my language, and how do I build the

language part of my language.

– Shriram Krishnamurthi (“Though my head is often in security,

networking, formal methods, and HCI, my heart is in program-

ming languages”). In video https://www.youtube.com/watch?
v=3N tvmZrzc, 38:50 – 41:40.

Paul Zhu Parsing from Scratch May 25, 2019 9 / 36

https://www.youtube.com/watch?v=3N__tvmZrzc
https://www.youtube.com/watch?v=3N__tvmZrzc

Foundation of Parser Generators

Formal language and automata theory, which every CS undergraduate

student learns!

In detail:

LL(1)

LL(k)

LR(1), SLR(1), LALR(1), etc.

Paul Zhu Parsing from Scratch May 25, 2019 10 / 36

Demonstration

LL(1) Parser Generator:

https://github.com/paulzfm/LL1-Parser-Gen

Paul Zhu Parsing from Scratch May 25, 2019 11 / 36

https://github.com/paulzfm/LL1-Parser-Gen

Contents

1 Parser Generator

2 Parser Combinators

3 Parsing, the Future

Typed Parsing

Automated Parsing

Paul Zhu Parsing from Scratch May 25, 2019 12 / 36

Why Parser Combinators?

I don’t want to learn any new tools.

My grammar is changing all the time, à la agile.

I hope to dynamically construct parsers in runtime.

Yacc is dead?

http://matt.might.net/articles/parsing-with-derivatives/

Paul Zhu Parsing from Scratch May 25, 2019 13 / 36

http://matt.might.net/articles/parsing-with-derivatives/

What is Indeed a Parser?

I give you a source (e.g. a char stream), you give me back a parsing

result (e.g. a parsing tree), which may fail, together with the remaining

source that is not consumed.

Paul Zhu Parsing from Scratch May 25, 2019 14 / 36

Parsec

1 parsec ≈ 3.26 light-years 2

A parser combinator library!

2https://en.wikipedia.org/wiki/Parsec
Paul Zhu Parsing from Scratch May 25, 2019 15 / 36

https://en.wikipedia.org/wiki/Parsec

Demonstration

scala-combinator-library

Haskell Parsec

Paul Zhu Parsing from Scratch May 25, 2019 16 / 36

Combinators Summary

eof :: Parser ()
char :: Char -> Parser Char
(<|>) :: Parser a -> Parser a -> Parser a
choice :: [Parser a] -> Parser a
try :: Parser a -> Parser a
many :: Parser a -> Parser [a]
many1 :: Parser a -> Parser [a]
sepBy :: Parser a -> Parser sep -> Parser [a]
between :: Parser open -> Parser close -> Parser a -> Parser a
optionMaybe :: Parser a -> Parser (Maybe a)

Paul Zhu Parsing from Scratch May 25, 2019 17 / 36

Monadic Operations

return :: Monad m => a -> m a
(>>=) :: Monad m => m a -> (a -> m b) -> m b
(>>) :: Monad m => m a -> m b -> m b

A parser is a monad!

Paul Zhu Parsing from Scratch May 25, 2019 18 / 36

Contents

1 Parser Generator

2 Parser Combinators

3 Parsing, the Future

Typed Parsing

Automated Parsing

Paul Zhu Parsing from Scratch May 25, 2019 19 / 36

Contents

1 Parser Generator

2 Parser Combinators

3 Parsing, the Future

Typed Parsing

Automated Parsing

Paul Zhu Parsing from Scratch May 25, 2019 20 / 36

Motivation: “Bizarre” Behaviors of Parsec

p1 = (char 'a' >> return 1) <|> (char 'a' >> return 2)
parse p1 "" "a"

p2 = (optionMaybe (char 'a')) >>= \x ->
(optionMaybe (char 'a')) >>= \y ->

return (x, y)
parse p2 "" "a"

p3 = (eof >> return [])
<|> (p3 >>= \xs -> char 'a' >>= \x -> return $ xs ++ [x])

parse p3 "" ""
parse p3 "" "aa"

p4 = (char 'a' >> char 'b' >> return 1)
<|> (char 'a' >> char 'c' >> return 2)

parse p4 "" "ab"
parse p4 "" "ac"

Paul Zhu Parsing from Scratch May 25, 2019 21 / 36

Combinators as a Formal Language

Grammar/Expression g ::= ⊥ | ε | c | x | g ∨ g′ | g · g′ | µx .g

where

c ∈ Σ, a finite set of characters

v ∈ V , a countably infinite set of variables

Kleene star is definable by means of a fixed point:

g∗ = µx .(ε ∨ g · x)

This part is based upon: Neelakantan R. Krishnaswami, Jeremy Yallop. A

Typed, Algebraic Approach to Parsing. PLDI’19.

Paul Zhu Parsing from Scratch May 25, 2019 22 / 36

Ambiguity in Predictive Parsing

(Disjunctive non-determinism) When parsing a string w against a

grammar of the form g1 ∨ g2, then we have to decide whether w

belongs to g1 or g2.

(Sequential non-determinism) When parsing a string w against a

grammar of the form g1 · g2, we have to split it into two pieces w1
and w1 so that w = w1 · w2 where w1 belongs to g1 and w2 belongs

to g2.

Q: How can we solve these problems?

Paul Zhu Parsing from Scratch May 25, 2019 23 / 36

Eliminating Ambiguities

null(L) = ε ∈ L

first(L) = {c | ∃w ∈ Σ∗.c · w ∈ L}
flast(L) = {c | ∃w ∈ L \ {ε},w ′ ∈ Σ∗.w · c · w ′ ∈ L}

Eliminating disjunctive non-determinism: their first character need be

disjoint.

Lemma 1

If first(L) ∩ first(M) = ∅ and ¬(null(L) ∧ null(M)), then L ∩M = ∅.

Eliminating sequential non-determinism: the split need be unique.

Lemma 2

If flast(L) ∩ first(M) = ∅ and ¬null(L) and w ∈ L ·M, then there are

unique wL ∈ L and wM ∈ M such that wL · wM = w .

Paul Zhu Parsing from Scratch May 25, 2019 24 / 36

Do it the PL Way!

A grammar/expression can be regarded as programs.

We only expect a part of the programs which have “good”

properties.

Thus, we specify a type system that is sound, i.e., every well-typed

program do have the “good” properties.

Nowadays, PL is almost about types!

Paul Zhu Parsing from Scratch May 25, 2019 25 / 36

Types: Motivation

Type τ :: {null :: Bool, first :: P(Σ), flast :: P(Σ)}

We expect the types to overapproximate the properties of the language,

and we define the satisfaction judgment L |= τ as

L |= τ ⇐⇒ null(L) = τ.null ∧ first(L) ⊆ τ.first ∧ flast(L) ⊆ τ.flast

Paul Zhu Parsing from Scratch May 25, 2019 26 / 36

Types Definition

τ⊥ = {null = false, first = ∅, flast = ∅}
τε = {null = true, first = ∅, flast = ∅}
τc = {null = false, first = {c}, flast = ∅}

τ1 ∨ τ2 = {null = τ1.null ∨ τ2.null, first = τ1.first ∪ τ2.first,

flast = τ1.flast ∪ τ2.flast}
τ1 ⊕ τ2 , (τ1.first ∩ τ2.first = ∅) ∧ ¬(τ1.null ∨ τ2.null)

τ⊥ · τ = τ⊥ = τ · τ⊥
τ1 · τ2 = {null = τ1.null ∨ τ2.null,

first = τ1.first ∪ if τ1.null then τ2.first else ∅,
flast = τ2.flast ∪ if τ2.null then τ2.first ∪ τ1.flast else ∅}

τ1 ~ τ2 , (τ1.flast ∩ τ2.first = ∅) ∧ ¬τ1.null

τ∗ = {null = true, first = τ.first, flast = τ.flast ∪ τ.first}

Paul Zhu Parsing from Scratch May 25, 2019 27 / 36

Typing Judgment

Context Γ,∆ ::= • | Γ, x : τ

The main typing judgement has the form

Γ; ∆ ` g : τ

is read as “under ordinary hypotheses Γ and guarded hypotheses ∆, the

grammar g has the type τ”, where the guarded variables are those which

cannot occur at the head of a string.

Example 1

If x : τ is guarded, the grammar x is considered ill-typed, but c · x is

permitted.

Paul Zhu Parsing from Scratch May 25, 2019 28 / 36

Typing Rules

Γ; ∆ ` g : τ

T-Bot
Γ; ∆ ` ⊥ : τ⊥

T-Eps
Γ; ∆ ` ε : τε

T-Char
Γ; ∆ ` c : τc

T-Var
x : τ ∈ Γ

Γ; ∆ ` x : τ

T-Union
Γ; ∆ ` g1 : τ1 Γ; ∆ ` g2 : τ2 τ1 ⊕ τ2

Γ; ∆ ` g1 ∨ g2 : τ1 ∨ τ2

T-Concat
Γ; ∆ ` g1 : τ1 (Γ,∆); • ` g2 : τ2 τ1 ~ τ2

Γ; ∆ ` g1 · g2 : τ1 · τ2

T-Fix
Γ; ∆, x : τ ` g : τ

Γ; ∆ ` (µx : τ.g) : τ

Remark: In T-Fix, the guarded x ensures that no left-recursive definitions

are typeable.

Paul Zhu Parsing from Scratch May 25, 2019 29 / 36

Contents

1 Parser Generator

2 Parser Combinators

3 Parsing, the Future

Typed Parsing

Automated Parsing

Paul Zhu Parsing from Scratch May 25, 2019 30 / 36

Log Parser

Jieming Zhu, Shilin He, Jinyang Liu, et al. Tools and Benchmarks for

Automated Log Parsing. ICSE’19. https://github.com/logpai/logparser
Paul Zhu Parsing from Scratch May 25, 2019 31 / 36

https://github.com/logpai/logparser

FlashExtract

Vu Le, Sumit Gulwani. FlashExtract: A Framework for Data Extraction

by Examples. PLDI’14.

Paul Zhu Parsing from Scratch May 25, 2019 32 / 36

AlphaRegex

Mina Lee, Sunbeom So, Hakjoo Oh. Synthesizing Regular Expressions

from Examples for Introductory Automata Assignments. GPCE’16.
Paul Zhu Parsing from Scratch May 25, 2019 33 / 36

Parsify

Alan Leung, John Sarracino, Sorin Lerner. Interactive Parser Synthesis by

Example. PLDI’15.
Paul Zhu Parsing from Scratch May 25, 2019 34 / 36

Glade

Osbert Bastani, Rahul Sharma, Alex Aiken, Percy Liang. Synthesizing

Program Input Grammars. PLDI’17.

https://github.com/obastani/glade

Paul Zhu Parsing from Scratch May 25, 2019 35 / 36

https://github.com/obastani/glade

Parsing is an Active Field

Although the topic, the theory, and the techniques of parsing are almost

well-studied in academia and widely-used in industry, research has never

been stopped and novel progress are made year by year.

Paul Zhu Parsing from Scratch May 25, 2019 36 / 36

	Parser Generator
	Parser Combinators
	Parsing, the Future
	Typed Parsing
	Automated Parsing

